Homotopic particle motion planning for humanoid robotics

نویسندگان

  • Andreas Orthey
  • Vladimir Ivan
  • Maximilien Naveau
  • Yiming Yang
  • Olivier Stasse
  • Sethu Vijayakumar
چکیده

Exploiting structure is essential to an understanding of motion planning. Here, we exploit the topology of the environment to discover connected components. Inside a connected component, instead of planning one trajectory in configuration space, motion planning can be seen as optimizing a set of homotopically equivalent particle trajectories. In this paper, we will concentrate on the problem of motion planning for a humanoid robot. Our contributions are: i) finding the homotopy classes of a single footstep trajectory in an environment, ii) finding a single footstep trajectory in a single homotopy class formulated as a convex optimization problem, and iii) finding a feasible upper body trajectory given a footstep trajectory, formulated as a set of convex optimization problems. This view provides us with important insights into the difficulty of motion planning, and – under some assumptions – allows us to provide the number of local minima of a given motion planning problem. We demonstrate our approach on a real humanoid platform with 36-dof in a highly restricted environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

PSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety

In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...

متن کامل

Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach

This paper presents a general method for planning collision-free wholebody walking motions for humanoid robots. First, we present a randomized algorithm for constrained motion planning, that is used to generate collision-free statically balanced paths solving manipulation tasks. Then, we show that dynamic walking makes humanoid robots small-space controllable. Such a property allows to easily t...

متن کامل

Robot motion planning for the humanoid robot HOAP-3

In the field of robotics there is a great interest in developing strategies and algorithms to reproduce humanlike behavior. Programming a humanoid robot to walk is a challenging problem. Traditional approaches rely heavily on prior knowledge of the robot’s physical parameters to devise sophisticated control algorithms for generating a stable gait. We present two approaches to solve the motion p...

متن کامل

Planning Whole-body Humanoid Locomotion, Reaching, and Manipulation

In this article we address the planning problem of whole-body motions by humanoid robots. The presented approach benefits from two cutting edges of recent advancement in robotics: powerful probabilistic geometric and kinematic motion planning and advanced dynamic motion control for humanoids. First, we introduce a two-stage approach that combines these two techniques for collision-free simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017